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Imino sulfonate photoacid generators (PAGs) sensitive to
i- and g-line were synthesized using 9-fluorenone derivatives
with aryl­ethynyl units as starting materials. The PAGs
exhibited good thermal stability and photoreactivity at 365
(i-line) and 436 nm (g-line) compared with that of an imino
sulfonate PAG synthesized from unfunctionalized 9-fluorenone.

Photoacid generators (PAGs) play an important role in many
fields such as photoinduced acid-catalyzed polymerization
systems (photoinduced curing systems) and photoresists.1 PAGs
sensitive to 365 nm light (i-line) or 436 nm light (g-line) have
been getting much attention recently, because of their applica-
tion to UV curing and chemically amplified photoresists for
i- and g-line lithography.2 However, practical i- and g-line
sensitive PAGs are still limited, and therefore, much effort has
been devoted for the development of new i- and g-line sensitive
PAGs by ourselves and other groups.2a,3 Among i- and g-line
sensitive PAGs, nonionic PAGs have received attention, because
of their better solubility in organic solvents and polymer films
compared with that of ionic PAGs.4 In addition, PAGs with an
ability to generate superstrong acids such as CF3SO3H or
C4F9SO3H have been desirable for the application of highly
photosensitive resists. We reported the synthesis of 9-fluorenyl-
ideneimino trifluoromethanesulfonate (FITf).3q Although FITf
was sensitive to i-line, the molar extinction coefficients (¾) of
FITf at 365 nm was relatively low, and FITf was not thermally
stable. After the investigation of the synthetic methods of the
new PAGs, we successfully found an entry of i- and g-line
sensitive imino sulfonate PAGs 1a, 1b, 2a, and 2b (Figure 1)
obtained using 9-fluorenone derivatives with aryl-ethynyl units
as starting materials.

Here we report the synthesis of the PAGs 1a, 1b, 2a, and 2b
and the photochemical properties of the PAGs.

Synthesis of PAGs 1a and 1b was performed as shown in
Scheme 1. A 9-fluorenone derivative 3 was synthesized by the
Sonogashira coupling reaction of arylacetylene derivatives and
2-bromo-9-fluorenone. Next, an oxime derivative 4 was obtained
by the reaction of 3 with hydroxylamine hydrochloride,
followed by esterification of 4 using trifluoromethanesulfonic
anhydride to afford 1a. Synthesis of 1b was also achieved by
the reaction of 4 with nonafluorobutanesulfonic anhydride. In
addition, PAGs 2a and 2b were obtained by a similar synthetic
procedure as shown in Scheme 2.

Characteristics of the PAGs are shown in Table 1. The
thermal decomposition temperatures of 1a, 1b, 2a, and 2b (158­
187 °C) were higher than that of FITf (135 °C). The PAGs 1a,
1b, 2a, and 2b exhibited high molar absorptivity at 365 nm
(i-line). Especially, the ¾ values at i-line of 2a and 2b were about
sixty times larger than that of FITf. Furthermore, the PAGs 1a,

1b, 2a, and 2b showed a strong absorption at 436 nm (g-line).
Thus, the PAGs 1a, 1b, 2a, and 2b can work not only as i-line
sensitive PAGs but also as g-line sensitive PAGs.

Photolysis of PAGs 1a, 1b, 2a, and 2b was examined in
acetonitrile. The UV spectral changes of 1a and 2a on irradiation
at 365 nm are shown in Figure 2. In the case of 1a, the
absorption band at 290 nm decreased on irradiation. The spectral
change in photolysis of 2a was also observed, and the
absorbance at 310 nm decreased. The photolysis of PAGs 1b
and 2b was also investigated, and similar spectral changes were
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Figure 1. Structures of PAGs 1a, 1b, 2a, 2b, and FITf.
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Scheme 1. Synthesis of PAGs 1a and 1b.
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observed. These results suggest that photolysis of PAGs 1a, 1b,
2a, and 2b proceeds via the same reaction mechanism. The
photolysis of PAGs 1a, 1b, 2a, and 2b also occurred on
irradiation at 436 nm. Photolysis was done at lower exposure
doses to avoid side reactions at higher exposure doses.

The photolysis rate of FITf, 1a, and 2a was examined in
acetonitrile on irradiation at 365 nm. The first-order plots for the
photolysis of these PAGs are shown in Figure 3. Photoreactiv-
ities of 1a and 2a were from four to eight times higher than that
of FITf. Furthermore, 1a and 2a strongly absorbed light at
436 nm compared with FITf, and therefore, the photolysis rates
of 1a and 2a were also higher than that of FITf as shown in
Figure 4. PAGs 1b and 2b exhibited similar photolysis rates in
acetonitrile on irradiation at 365 or 436 nm compared with those
of 1a and 2a.

Acid generation of 1a and 2a in acetonitrile on irradiation at
365 nm was examined using the sodium salt of tetrabromophe-
nol blue (TBPBNa) as an indicator.5 TBPBNa reacts with acids
causing a decrease in the absorption band at 618 nm. The
acetonitrile solution of PAGs 1a or 2a was irradiated at 365 nm
for the appropriate times, and the solution of TBPBNa was

added to the solution of the photolyzed PAGs. As a result, the
decrease of the absorption band of TBPBNa was observed
(Figure 5). These results suggest that 1a and 2a decompose and
generate acids on the irradiation at 365 nm. The photoinduced
acid generation of 1b and 2b was also confirmed by a similar
experiment described above.6

A proposed reaction mechanism of photolysis of imino
sulfonate PAGs is shown in Scheme 3.1a After the cleavage of

Table 1. Characteristics of PAGs

Sample Td/°Ca ¾ (365 nm)b ¾ (436 nm)b

1a 167 773 1810
1b 158 1150 1740
2a 187 18500 3250
2b 180 17100 2880
FITf 135 300c ®c,d

aDetermined by TG-DTA measurement under nitrogen. Heating
rate; 10 °Cmin¹1. bIn THF. cIn acetonitrile. dNegligibly low.
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Figure 2. UV­vis spectral changes of (a) 1a, (b) 2a in acetonitrile
on irradiation at 365 nm. [1a] = 1.20 © 10¹5M, and [2a] = 1.23 ©
10¹5M.
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Figure 3. Photolysis of 1a ( ), 2a ( ), and FITf ( ) in acetonitrile
on irradiation at 365 nm.
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­O­N= bonds on UV irradiation, sulfonic acids are formed by
subsequent hydrogen abstraction from solvents with the gen-
eration of ketones and azines. The increase in absorbance around
380 nm indicates the formation of azines (Figure 2).

In conclusion, we synthesized 1a, 1b, 2a, and 2b as new
i- and g-line sensitive PAGs using fluorenones functionalized
with aryl­ethynyl units as starting materials.7 The thermal
stabilities and photoreactivities on irradiation at 365 or 436 nm
of 1a, 1b, 2a, and 2b were superior to those of FITf. To the best
of our knowledge, this is the first example of the PAG synthesis
via the introduction of aryl­ethynyl units to the chromophore to
improve their ability of i- and g-line sensitive PAGs. We believe
that the present synthetic approach of PAGs is an efficient

method to develop a variety of new PAGs. Further studies are in
progress in relation to the application of PAGs 1a, 1b, 2a, and
2b to the polymeric photosensitive systems and the synthesis of
other new PAGs with aryl­ethynyl units.
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Figure 4. Photolysis of 1a ( ), 2a ( ), and FITf ( ) in acetonitrile
on irradiation at 436 nm.
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